Projectiles launched at an angle

Assumptions:

- after launch, the only acceleration is g
- there is no air resistance
- vy changes, and reaches zero at the apex of the parabola. v_{y} at B is the same magnitude as at A
- v_{X} remains constant
- time is symmetrical about the apex of the parabola
- points A and B are horizontally opposed

Formulas:

$$
\begin{aligned}
& v_{y}=\frac{\square g t}{2} \quad v_{y}=v_{i} \sin \square \quad v_{x}=\frac{x}{t} \quad v_{x}=v_{i} \cos \square \\
& v_{i}=\frac{\square g x}{2(\sin \square \cos \square)} \quad t=\frac{2 v_{y}}{g} \quad t=\frac{x}{v_{x}}
\end{aligned}
$$

