Projectiles launched at an angle

Assumptions:

- after launch, the only acceleration is g
- there is no air resistance
- \cdot v_y changes, and reaches zero at the apex of the parabola. v_y at B is the same magnitude as at A
- v_X remains constant
- time is symmetrical about the apex of the parabola
- points A and B are horizontally opposed

Formulas:

$$v_y = \frac{-gt}{2}$$
 $v_y = v_i \sin \theta$ $v_x = \frac{x}{t}$ $v_x = v_i \cos \theta$

$$v_i = \frac{-gx}{2(\sin\theta\cos\theta)} \qquad t = \frac{2v_y}{g} \qquad t = \frac{x}{v_x}$$