Coefficient of friction for a block on a ramp.

Given: the block slides down the ramp at constant velocity due to a component of it's gravitational *weight*, Fg_{\parallel} . By similar triangles, both angles Θ are equal.

The frictional force $\mathbf{F_{f}}$ is equal and opposite to $\mathbf{F_{a}}$ as long as the box slides with constant velocity

$$\mathbf{F_f} = \mathbf{F_a} = \mathbf{Fg}_{\parallel} = \mathbf{Fg} \bullet \mathbf{sin}\boldsymbol{\Theta}$$

The normal force $\mathbf{F_n}$ is equal in magnitude to the component of gravity that is perpendicular to the ramp \mathbf{Fg}_{\perp}

$$\mathbf{F_n} = Fg_{\perp} = Fg \cdot \cos\Theta$$

$$\mu = \frac{F_f}{F_n} = \frac{F_{\parallel}}{F_{\perp}} = \tan \Theta$$